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ABSTRACT Traditional fuzzy clustering algorithms suffer from two problems in image segmentations.
One is that these algorithms are sensitive to outliers due to the non-sparsity of fuzzy memberships. The
other is that these algorithms often cause image over-segmentation due to the loss of image local spatial
information. To address these issues, we propose a robust self-sparse fuzzy clustering algorithm (RSSFCA)
for image segmentation. The proposed RSSFCA makes two contributions. The first concerns a regularization
under Gaussian metric that is integrated into the objective function of fuzzy clustering algorithms to obtain
fuzzy membership with sparsity, which reduces a proportion of noisy features and improves clustering
results. The second concerns a connected-component filtering based on area density balance strategy (CCF-
ADB) that is proposed to address the problem of image over-segmentation. Compared to the integration of
local spatial information into the objective functions, the presented CCF-ADB is simpler and faster for the
removal of small areas. Experimental results show that the proposed RSSFCA addresses two problems in
current fuzzy clustering algorithms, i.e., the outlier sensitivity and the over-segmentation, and it provides
better image segmentation results than state-of-the-art algorithms.

INDEX TERMS Fuzzy c-means clustering (FCM), image segmentation, sparse membership, over-
segmentation

I. INTRODUCTION

CLUSTERING is an unsupervised classification algo-
rithm and it aims to classify data into several disjoint

subsets depending on data features [1]. As one of the im-
portant techniques of data analysis and data mining, cluster-
ing has been widely used for text classification, biometric
features recognition, image segmentation, etc. In these ap-
plications, image segmentation based on clustering are very
popular and a large number of algorithms have been proposed
and used in the fields of medicine [2], remote sensing [3], in-
telligent transportation [4], etc. Popular clustering algorithms
mainly include hierarchical clustering [5], spectral clustering
[6], fuzzy clustering [7], affinity propagation clustering [8],
density peak clustering [9], etc. In this paper, we mainly fo-
cus on fuzzy clustering based on object function optimization
for image segmentation.

Fuzzy c-means clustering (FCM) often suffers from two

problems for image segmentation: firstly, it is sensitive to
noise [10]; secondly, it lacks the local spatial information
of images leading to over-segmentation [11]. To address
these drawbacks, researchers proposed many improved fuzzy
clustering algorithms. They mainly adopted two strategies;
one is to utilize regularization approaches to achieve self-
optimization of FCM, the other one is to incorporate local
spatial information into the object functions of FCM to
improve image segmentation.

To improve the robustness of FCM against noise, a lot of
improved FCM algorithms based on self-optimization have
been presented. Ahmed et al. [12] proposed bias correction
FCM (BCFCM) that integrates a bias field into its objective
function. Although the bias field is able to correct some pixels
corrupted by noise, it shows low robustness for different
kinds of noisy images since the bias field is often not sparse.
Based on this work, Zhang et al. [13] proposed a deviation-
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sparse fuzzy c-means (DSFCM) that utilizes regularization
with sparsity constraint to mitigate significantly the defect
of BCFCM. Though DSFCM is able to provide accurate
clustering centers, it is sensitive to regularization parameters
and thus shows low robustness. Motivated by the Network
lasso [14], Guo et al. [15] further explored the affinity-
based regularization and proposed the membership affinity
lasso regularized fuzzy c-means clustering (MalFCM). The
MalFCM generates better classification results than DS-
FCM via building an affinity matrix, but MalFCM requires
high computational complexity since the alternating direction
method of multipliers (ADMM) [16] is used to optimize the
affinity matrix. However, both DSFCM and MalFCM depend
on a condition that the sum of membership values of each
pixel is equal to 1. To loosen this condition, Pal et al. [17]
proposed possibilistic FCM (PFCM) by considering mem-
berships and possibilities, which hybridizes FCM and possi-
bilistic c-means [18] with looser constraint on membership.
Although PFCM can mine more informative descriptions of
data, it lacks robustness against data with non-spherical dis-
tribution. To settle the shortcoming, Bai et al. [19] proposed
similarity measure-based PFCM. Continuing in direction of
membership, Zhou et al. [20] reported a membership scaling
FCM (MSFCM) based on triangle inequality. The MSFCM
not only effectively improves the convergence speed of the
model but also maintains the accuracy of data clustering.

In most improved FCM algorithms mentioned above, the
fuzzifier exponent is often considered as a constant and its
value is usually equal to 2. However, in practical applications,
the change of the value of fuzzifier exponent easily leads
to different segmentation effect [21, 22]. To address this
problem, Miyamoto et al. [23] proposed maximum entropy
FCM (MEFCM) that avoids the selection of the value of
fuzzifier exponent and simplifies its calculation. Inspired by
MEFCM, both [24] and [25] introduced relative entropy and
kernel distance to improve their objective function. How-
ever, these FCM algorithms based on entropy theory do not
consider the sparsity of memberships, which leads to the
misclassification for outliers. Recently, Xenaki et al. [26, 27]
verified a conclusion that the sparsity of fuzzy memberships
can deal well with closely located clusters. Similarly, Xu
et al. [28] also demonstrated that the sparsity can avoid
performance degradation of clustering algorithms. These pre-
vious reports show that fuzzy memberships with sparsity can
positively improve clustering results. However, it is still a
challenge to obtain reasonable sparsity of fuzzy membership.
Moreover, it is difficult to apply those algorithms mentioned
above to image segmentation due to the lack of local spatial
information.

To reduce over-segmentation caused by fuzzy clustering
algorithms, the local spatial information of images is usu-
ally incorporated into their objective functions [29-33]. The
utilization of local spatial information can be grouped into
two categories: obtaining the neighboring information in a
fixed-size window or in an adaptive neighboring window.
Early improved FCM algorithms usually employ a fixed-size

window of size w × w to obtain local spatial information
such as FCM_S [12], FCM_S1 [29], FCM_S2 [29], FLICM
[30], KWFLICM [33], DSFCM_N [13] etc. Similar to the
above algorithms, recently, Mishro et al. [34] proposed a
novel type-2 adaptive weighted spatial FCM (AWSFCM)
clustering algorithm that employs a fuzzy linguistic fuzzifier
and spatial information of membership to reduce misclassifi-
cation of pixels. However, in practical applications, a large
window usually leads to rich spatial information but high
computational cost; on the contrary, a small window leads
to low computational cost but limited spatial information.
Therefore, a middle-size window like 3× 3 or 5× 5 is popu-
lar for these algorithms since the window achieves a balance
between spatial information and computational cost. To over-
come the limitation of fixed-size windows, some researchers
employ superpixel techniques to obtain adaptive neighboring
information such as Liu’s algorithm [35], FDCM_SSR [36],
SFFCM [37], AFCA [38], etc. Although the second strategy
improves segmentation accuracy due to the utilization of
adaptive neighboring information, these algorithms seriously
depend on the selection of superpixel algorithms [39-41].
A good superpixel algorithm not only improves the final
segmentation result, but also reduces computational cost
efficiently. However, the segmentation result will be worse
than one obtained by FCM if the superpixel algorithm is un-
suitable for images to be segmented. In particular, superpixel
algorithms are unavailable for images with low-contrast or
blurred edges.

For the reduction of over-segmentation, image filtering
is also a popular strategy. In [42], Szilagyi et al. proposed
enhanced FCM (EnFCM) by introducing histogram to its
objective function and applying a local linear-weight filtering
to each pixel. As the number of gray-levels is generally much
smaller than the number of pixels in a grayscale image, the
EnFCM achieves high computational efficiency in image seg-
mentation. On the basis of this work, Cai et al. [43] proposed
the fast generalized FCM (FGFCM) by integrating a bilateral
filter to its objective function. Furthermore, Zhao et al. [44]
presented a FCM algorithm with self-tuning non-local spatial
information [45]. However, the computation of non-local
spatial information is time-consuming. Inspired by FGFCM,
Guo et al. [46] proposed a noise detecting FCM (NDFCM)
with auto-tuning parameters by measuring local variance of
gray levels. More recently, Lei et al. [47] proposed a fast
and robust FCM (FRFCM) based on morphological recon-
struction and membership filtering. FRFCM achieves good
segmentation results and requires short execution time for
different kinds of grayscale images.

According to those studies mentioned above, currently
popular fuzzy clustering algorithms still suffer from two
challenges for image segmentation tasks. The first is that
these algorithms lack immunity to outliers due to the non-
sparsity of fuzzy memberships. The second is that it is
difficult to overcome effectively over-segmentation for them.
To solve these challenges, we employ a novel regularization
to obtain sparse fuzzy memberships, and use a connected-
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component filtering algorithm based on area density balance
strategy (CCF-ADB) to achieve region merging adaptively,
and finally propose a robust self-sparse fuzzy clustering
algorithm (RSSFCA) for image segmentation. The proposed
RSSFCA1 has two advantages:

• The RSSFCA utilizes regularization under Gaussian
metric to obtain proper sparse memberships that can
effectively reduce non-homogenous interference and
achieve better classification than popular self-optimized
FCM algorithms.

• The RSSFCA employs the CCF-ADB to achieve au-
tomatically region merging, which is superior to the
strategy of incorporating local spatial information and
helps RSSFCA to achieve better image segmentation
than improved FCM algorithms within local spatial
information.

The organization of this paper is presented as follows. We
first discuss our motivations in Section II. Then, we introduce
the proposed algorithm and analyze its advantages in Section
III. Thirdly, we conduct experiments and discuss experimen-
tal results in Section IV. Finally, we provide conclusion in
Section V.

II. MOTIVATION
To improve fuzzy clustering algorithms for image segmen-
tation, researchers usually adopt two strategies. One is in-
troducing regularization terms into objective functions to
improve clustering results, the other one is integrating local
spatial information into object functions to overcome over-
segmentation. As classification results of pixels are decided
by fuzzy memberships, a good objective function should
meet the constraint of sparsity of fuzzy memberships. How-
ever, it is difficult to obtain sparse fuzzy memberships for
popularly self-optimized FCM algorithms such as DSFCM
and MalFCM. Motivated by this, we introduce a new regular-
ization to the objective function of FCM. Most of improved
FCM algorithms employ a fixed-size window or adaptive
neighboring windows to overcome over-segmentation, but
the utilization of local spatial information often leads to
smooth boundaries or high computational cost. In order to
address the problem, we present a connected-component
filtering based on area density balance strategy to achieve
adaptive region merging, which can maintain boundary ac-
curacy and requires low computational cost.

A. SELF-OPTIMIZED FCM

Let X = {x1,x2, · · · ,xn} ∈ <D×n be an unlabeled data
set, and we aim to spilt X into c disjoint clusters, with
the corresponding clustering centers V = {v1,v2, · · · ,vc}.
The FCM algorithm [7] uses Lagrange multiplier technique
to find optimal solutions with respect to sum of squared
Euclidean distance error. The objective function of FCM is

1Source code is available at https://github.com/SUST-reynole/RSSFCA

defined as:

J =

c∑
i=1

n∑
j=1

umij‖xj − vi‖2, (1)

where c denotes the number of clusters, n denotes the number
of samples, uij is the degree of membership of xj with
respect to the clustering center vi, 0 ≤ uij ≤ 1 and∑c
i=1 uij = 1, m is the fuzzification exponent for the

partition matrix uij , and ‖ · ‖ represents the Euclidean norm.

It is well-known that FCM is sensitive to noise and out-
liers in data, and it lacks robustness for non-spherical data
clustering due to the employment of square loss in (1).
Regularization-based FCM algorithms address the problem
through adding a constraint, i.e., a regularization term, to
their objective functions. The regularization term is able to
help FCM to improve clustering accuracy for data corrupted
by noise or non-spherical data. Zhang et al. [13] introduced
the deviation-sparse to FCM (DSFCM) to construct a novel
objective function that is defined as:

J =

c∑
i=1

n∑
j=1

umij‖xj − ej − vi‖2 + λ

n∑
j=1

|ej |, (2)

where ej is the deviation between xj and its the theoretical
value, and λ is the regularization scalar. It is easy to obtain a
sparse matrix E = {e1, e2, · · ·, en} ∈ <D×n by using soft-
thresholding [48]. The DSFCM can improve classification
accuracy for noisy data. On the one hand, it uses large
deviation values of ej to revise xj corrupted by noise, and
on the other hand, it uses xj with small value to maintain
the original xj uncorrupted by noise. Therefore, the DSFCM
can improve the robustness of FCM for noisy data clustering
because of the introduction of regularization term into its
objective function. However, it is difficult to set the value of
λ for different kinds of data.

Inspired by the Network lasso [14], Guo et al. [15] de-
veloped a new regularization of membership affinity lasso
(MalFCM) and presented the objective function as follows:

J =

c∑
i=1

 n∑
j=1

umij‖xj − vi‖2 +

c∑
j=1

n∑
k=1

wjk|uij − uik|

 ,

(3)
where wjk is the affinity of the jth point xj to the kth point
xk. The MalFCM employs the alternating direction method
of multipliers (ADMM) [16] to optimize the membership
affinity lasso. Consequently, it achieves accurate classifica-
tion for complex data due to the consideration of membership
similarity. However, the MalFCM requires high computa-
tional cost because ADMM is time-consuming.

Noted that both DSFCM and MalFCM require to set the
value of parameter m. To reduce the influence of parameters,
Miyamoto et al. [23] integrated a penalty term of maximum
entropy (MEFCM) into its objective function:

J =

c∑
i=1

n∑
j=1

uij‖xj − vi‖2 + λ

c∑
i=1

n∑
j=1

uij ln(uij). (4)
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Here, the entropy term works as the degree of fuzzifier. As a
result, the MEFCM not only avoids the parameter setting on
fuzzification exponent m, but also minimizes the intra-class
dispersion and maximizes the inter-class negative weight
entropy. However, it is still difficult to set the value of λ for
MEFCM.

Regularization-based FCM algorithms can improve clus-
tering results for complex data, but they face two difficulties
for complex non-spherical data. The first is that the Euclidean
distance shows poor robustness for non-spherical data, and
the second is that fuzzy membership is non-sparse, easily
leading to the ambiguity for identified data. To address the
difficulties, we use the Gaussian distribution instead of the
Euclidean distance, and integrate the appropriate regulariza-
tion term to our objective function to make sure that fuzzy
memberships are sparse. We will present detailed description
of the proposed strategy in Section III. A.

B. FCM WITH LOCAL SPATIAL INFORMATION

Image segmentation algorithms based on FCM easily cause
over-segmentation since FCM ignores the local spatial in-
formation of images. To overcome the drawback, a large
number of improved FCM algorithms have been proposed
by incorporating local spatial information into their objective
functions [29-33]. These algorithms can be categorized into
two groups: The first group requires long execution time
due to the computation of local spatial information in each
iteration, while the second group shows high computational
efficiency since the local spatial information is computed
only once before iterations. Generally, the objective function
of the first group can be abstracted as follows:

J =

c∑
i=1

n∑
j=1

umij‖xj − vi‖2 +

c∑
i=1

n∑
j=1

Gij , (5)

where Gij denotes fuzzy factor that is used to balance noise
suppression and the edge detail preservation. The value of
Gij depends on pixels within neighboring windows and it
can be changed in each iteration. If xj is a pixel corrupted
by noise, then it will be replaced with Gij to reduce the
influence of outliers. Therefore, the introduction of constraint
terms into objective functions improves the noise tolerance
and outliers resistance for image segmentation, and different
forms of Gij lead to variously improved FCM algorithms,
such as FCM_S, FCM_S1/S2, FLICM, etc.

Although those algorithms mentioned above can improve
image segmentation effect, they are impractical due to high
computational complexity. To reduce the computational cost,
researchers designed fast FCM algorithms that avoid the
redundant computation of local spatial information. The ob-
jective function of fast FCM algorithms is defined as follows:

J =

c∑
i=1

n′∑
j=1

rju
m
ij‖x

′

j − vi‖2, (6)

where n′ denotes the number of gray-level of test images, and

n′ � n. The x
′

j denotes the jth pixel in the filtered image. We
can define x

′

j = F (xr∈j) , where F represents a filter, xr
stands for a pixel fallowing into the neighboring window of
xj . Based on different filters, a lot of FCM algorithms used
for fast image segmentation are proposed such as EnFCM,
FGFCM, NDFCM, FRFCM, etc.

It is clear that the introduction of local spatial information
is very popular for improving image segmentation effect, but
it suffers from high computational cost. Although many fast
FCM algorithms are proposed by incorporating gray-level
histogram or superpixels into their objective functions [37],
it is still a challenge to obtain excellent segmentation results.
For this problem, Comaniciu et al. [39] presented an auxiliary
strategy in mean-shift algorithm, namely eliminating spatial
regions containing the number of pixels less than M , where
M is a threshold. Inspired by this idea, we propose the
CCF-ADB to help FCM to overcome over-segmentation.
The CCF-ADB is simple and effective, it is superior to the
strategy of integrating local spatial information, and achieves
automatic region merging. We will comprehensively describe
the CCF-ADB in Section III. B.

III. METHODOLOGY
In this study, we propose a novel self-sparse fuzzy c-means
clustering algorithm (SSFCA) based on regularization ap-
proaches to obtain suitable sparse fuzzy memberships. Mean-
while, we utilize the CCF-ADB to merge useless small
regions. The proposed RSSFCA can effectively overcome
outlier sensitivity and over-segmentation, and thus improve
segmentation results.

A. SELF-SPARSE FUZZY C-MEANS
Based on the analysis in Section II. A, DSFCM, MalFCM,
and MEFCM cannot obtain sparse fuzzy memberships. To
address this issue, we introduce a novel regularization ap-
proach by considering u2

ij as a penalty term. We define the
objective function of SSFCA as:

J̃ =

c∑
i=1

n∑
j=1

uijΦ(xj |vi,Σi) + γ

c∑
i=1

n∑
j=1

u2
ij , (7)

where Φ(xj |vi,Σi) represents the distance function between
xj and vi, γ is a balance factor used for controlling the
sparsity of memberships. By changing the value of γ, the
objective function shows different degrees of robustness to
outliers or noises.

In (7), if the fuzzy membership is sparse, the first term
of J̃ will be small while the second term will be large. The
SSFCA often requires more iterations than k-means but fewer
iteration than FCM for optimal computation. It is clear that
the novel objective function J̃ achieves a balance between
k-means and FCM. The obtained fuzzy membership is more
sparse than that provided by FCM. In contrast with k-means,
some fuzzy membership values are not 0 or 1. Besides,
Φ(xj |vi,Σi) is defined as:

Φ(xj |vi,Σi) = ln(−ρ(xj |vi,Σi)), (8)
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(a) (b) (c)

FIGURE 1. Distribution curve and corresponding distance curve.
(a) Normal distribution curve ρ. (b) Distance curve Φ. (c) Corrected
distance curve Φ′.

where ρ(xj |vi,Σi) is the Gaussian density function, and it is
defined as:

ρ(xj |vi,Σi) =
exp(− 1

2 (xj − vi)
TΣ−1

i (xj − vi))

(2π)(D/2)|Σi|(1/2)
, (9)

where D denotes the dimension of input data, Σi denotes
covariance matrix that describes the intra-class dispersion of
the ith class. Substituting (9) into (8), we obtain:

Φ(xj |vi,Σi) =
1

2
((xj−vi)

T Σ−1
i (xj−vi)+ln|Σi|+Dln(2π)),

(10)
Note that the distance metric in (10) is different from the
Mahalanobis distance, since the former includes the variable
ln|Σi| that may be a large negative value for dense distri-
bution data. The Φ(xj |vi,Σi) may be unsatisfied for the
constraint of nonnegative values due to the effect of ln|Σi|
as shown in Fig. 1.

In Fig. 1(a), there are three groups of data provided by
(9) with parameters v1 = 0, and Σ1 = 0.36; v2 = 0,
and Σ2 = 0.16; and v3 = 0, and Σ3 = 0.04. It can be
easily found that a smaller value of covariance corresponds
to a compact curve, i.e., compact data distribution. Fig. 1(b)
shows the result provided by (10). Note that the blue curve
includes negative values, which violates the requirement of
positive values on distance measure metric. With the decrease
of the covariance value, more negative values lead to serious
errors in distance measure and misclassification. To solve
this problem, we use Φ′(xj |vi,Σi) instead of Φ(xj |vi,Σi),
where

Φ′(xj |vi,Σi) =

{
Φ−min(Φ) min(Φ) < 0

Φ otherwise
. (11)

Fig. 1(c) shows that Φ′(xj |vi,Σi) satisfies the non-
negative constraint of distance. Substituting Φ′(xj |vi,Σi)
into (7), the final objective function is defined as:

J̃ ′ =

c∑
i=1

n∑
j=1

uijΦ
′(xj |vi,Σi) + γ

c∑
i=1

n∑
j=1

u2
ij . (12)

For each sample xj , the J̃ ′ can be separated into c sub-
problems with constraint conditions 0 ≤ uij ≤ 1 and∑c
i=1 u

m
ij = 1. Then we get

J̃ ′j = min

c∑
i=1

(uijΦ
′(xj |vi,Σi) + γu2

ij). (13)

(d) DSFCM (e) MalFCM (f) SSFCA

(a) Original data (b) FCM (c) MEFCM

FIGURE 2. Results of different algorithms for image data with
outliers.

through simplification, J̃ ′j can be rewritten as:

J̃ ′j = min‖uij − hij‖2, (14)

where hij = −Φ′(xj |vi,Σi)/2γ. Utilizing the optimization
strategy proposed in [49] to solve (14), we obtain fuzzy
memberships with different degrees of sparsity by tuning the
value of γ.

Similarly, the J̃ ′i can be separated into n independent sub-

problems to obtain the clustering center vi by solving
∂J̃′

j

∂vi
=

0,

∂J̃ ′i
∂vi

=

n∑
j=1

uij

∂
[
(xj − vi)

TΣ−1
i (xj − vi)

+ln|Σi|+Dln(2π)

]
∂vi


=

n∑
j=1

uij(xj − vi)

= 0,

we get

vi =

∑n
j=1 uijxj∑n
j=1 uij

. (15)

Furthermore, the updated covariance matrix Σi is obtained
by solving ∂J̃′

i

∂Σi
= 0,

∂J̃ ′i
∂Σi

=

n∑
j=1

uij

∂
[
(xj − vi)

TΣ−1
i (xj − vi)

+ln|Σi|+Dln(2π)

]
∂Σi


=

n∑
j=1

uij
(
(xj − vi)

TΣ−2
i (xj − vi) + Σ−1

i

)
= 0,

the solution yields

Σi =

∑n
j=1 uij(xj − vi)

T (xj − vi)∑n
j=1 uij

. (16)

To reduce the number of iterations, the membership ma-
trix, clustering centers, and the covariance matrix are initial-
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(a) (b) (c) (d) (e)

FIGURE 3. Comparison of heatmap visualization using different algorithms. (a) The original image. (b) FCM. (c) MEFCM. (d) DSFCM. (e)
SSFCA.

(a) (b) (c) (d) (e)

FIGURE 4. Comparison of segmentation results using different
clustering algorithms with self-optimization. (a) Original image. (b)
FCM. (c) MEFCM. (d) DSFCM. (e) SSFCA.

ized by the FCM algorithm. We summarize the procedure of
the proposed SSFCA as follows:
(1) Set the number of clusters c, regularization parameter γ,

convergence threshold η, and maximum iteration number
T .

(2) Initialize the membership U (0), the clustering centers
V (0), and the covariance matrix Σ(0) using the FCM
algorithm.

(3) Set the loop counter t = 1.
(4) Update U (t), V (t), Σ(t) using (14), (15), and (16),

respectively.
(5) Update the objective function J̃ ′

(t)
using (12).

(6) If max |J̃ ′
(t)
− J̃ ′

(t−1)
)| ≤ η or t ≥ T , stop; otherwise,

update t = t+ 1, and go to step 4.
To demonstrate the effectiveness of SSFCA, we apply the

SSFCA to data clustering with outliers. The test data is gener-
ated by sampling pixels at regular grid in an image “113044”
from Berkeley Segmentation Dataset (BSDS500) [50]. Fig.
2 shows the comparison of clustering results provided by
different algorithms. It can be easily seen that the SSFCA
with γ = 0.2 achieves the best clustering result, which
demonstrates that SSFCA is more robust for outliers than
comparative algorithms based on regularization.

Fig. 3 further illustrates the effectiveness of the SSFCA on
image segmentation using heatmap visualization. It is clear
that MEFCM, DSFCM and SSFCA attract more attention on
“horses” than FCM. Simultaneously, the SSFCA achieves the
best result due to the Gaussian metric and self-sparse opti-
mization. Note that we do not provide the result generated by
MalFCM since the algorithm requires to construct an affinity
membership matrix that is very large for the image “113044”.

(a) (b) (c) (d) (e)

FIGURE 5. Comparison of segmentation results using different
clustering algorithms with local spatial information. (a) FLICM. (b)
KWFLICM. (c) NWFCM. (d) FRFCM. (e) DSFCM_N.

B. OVER-SEGMENTATION REDUCTION

FCM uses pixel classification to achieve image segmenta-
tion, where each pixel of images is viewed as an indepen-
dent sample. Therefore, FCM often causes the problem of
over-segmentation, i.e., segmentation results include a large
number of isolated small areas as shown in Fig. 4. It can
be seen that DSFCM misclassifies more pixels than FCM
and MEFCM because of inappropriate sparse deviation.
Although the SSFCA partly suppresses the interference of
non-homogenous pixels and obtains better visual effect, it
still suffers from over-segmentation as shown in Fig. 4(e).
Improved FCM algorithms based on the incorporation of
local spatial information can alleviate over-segmentation by
removing small areas, which is insufficient as shown in Fig.
5.

Although the mean-shift can effectively alleviate over-
segmentation by eliminating small regions containing pixels
less than M , the value of M is often adjusted manually for
different images. In this work, we propose a novel CCF-ADB
to improve the SSFCA. Fig. 6 shows the framework of the
CCF-ADB. It is clear that Fig. 6(b) includes many useless
small regions that reduces the final segmentation accuracy.
According to the proposed CCF-ADB, we firstly compute
the area of all connected components in Fig. 6(b), and then
sort these connected components in descending order as
shown in Fig. 6(c). Because it is difficult to obtain the value
of threshold M depending on the sorting result, the ADB
strategy is used to improve the sorting result as shown in
Fig. 6(d). Based on the improvement, it is easy to obtain
the maximum interval of Fig. 6(d). The maximal interval
corresponds to a region whose area is considered as the value
of M . Then we can eliminate small connected components
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(a) Input image (b) Connected label (g) Output result(e) Uesless  regions (f) Assigning index  (c) Area decision-graph (d) New decision-graph

Area density balance strategy (ADB)  Connected-component filtering (CCF)

Adaptively Finding cutoff area M Eliminating regions less than M

FIGURE 6. The framework of connected-component filtering based on adaptive density balance (CCF-ADB).

(a) Original image (c) New decision-graph(b) Decision-graph (d) Output result

FIGURE 7. Improving segmentation results using the CCF-ADB.

as shown in Fig. 6(e) and (f) using the obtained M . Finally,
Fig. 6(g) shows the segmentation result using the CCF-ADB.

To illustrate the strategy of ADB in details, let the χp de-
note the pth point, where 0 ≤ χp ≤ 1 and 1 ≤ p ≤ (K + 1),
p ∈ N+. The αq denotes the normalized area of the qth
region, the ξp denotes the number of αq around χp under
radius ε, which is presented as follows

ξp =

Q∑
q=1

ϕq, (17)

ϕq =

{
1 ‖αq − χp‖ ≤ ε
0 otherwise

. (18)

whereQ is the number of connected components in an image
generated by the SSFCA. The κq is the mapping result of αq ,
where κq can be computed as follows:

κq =
∑

χp≤αq

ξp. (19)

We perform the normalization on κq to obtain κ′q . More
details about the density balance algorithm can be seen in
[51]. We present the detailed description of the CCF-ADB as
follows:

Input: A connected-component image generated by the
SSFCA.

Initialization: Normalized areas αq for the input image,
K = 1000, and ε = 0.1.

Step 1: Compute ϕq using (18).
Step 2: Compute ξp using (17).
Step 3: Compute κq using (19).
Step 4: Implement the normalization on κq to obtain κ′q .
Step 5: Compute the value of cutoff area M using the

maximal interval in κ′q .

Step 6: Merge regions whose areas are smaller than the
value of M using the minimum distance in connected-
component images.

Output: A labeled image containing fewer regions than
the input image.

According to the CCF-ADB, we compute decision-graph
and improved decision-graph as shown in Fig. 7. By compar-
ing Fig. 7(b) and (c), the ADB provides accurate maximum
intervals and thus helps the CCF to improve segmentation
results from the SSFCA.

IV. EXPERIMENTS
To demonstrate the advantages of the proposed RSSFCA for
image segmentation. We conducted experiments on synthetic
images and two benchmark images. The first experiment
demonstrates the superiority of RSSFCA on image with
significant noise. The latter two experiments demonstrate the
practicality and robustness of RSSFCA on different images
from the Berkeley Segmentation Dataset (BSDS500) [50]
and the Microsoft Research in Cambridge (MSRC) [52].

A. PARAMETERS SETTING
In our experiments, PFCM, KWFLICM, NDFCM, FRFCM,
Liu’s algorithm, DSFCM_N, MSFCM and AWSFCM are
considered as comparative algorithms. The fuzzy exponent
is m = 2, convergence threshold is η = 10−5, and maximum
iteration number is T = 50. Most of comparative algorithms
employ local spatial information except PFCM, MSFCM and
RSSFCA, the size of neighboring window is 3 × 3. For
PFCM, the relative importance of membership and typicality
are both 1, and the exponent of typicality is selected as 2.
In addition, both KWFLICM and MSFCM are free of other
parameters. For the NDFCM, the values of spatial weighting
factor, gray-level weight factor and controlled scale factor are
set to 3, 5, and 3, respectively. Liu’s algorithm uses the mean-
shift to generate pre-segmentation results in which three
parameters are necessary, i.e., spatial bandwidth hs = 10,
the range bandwidth hr = 10, and the minimum output
regions M = 100 following the original paper. We use
default values of parameters for the FRFCM and DSFCM_N.
For AWSFCM, we also referred to the paper and chose the
number of α-planes as 3, which can further reduce execu-
tion time. The proposed RSSFCA requires a regularization
parameter; we set γ = 0.2. All test algorithms are executed
on a DELL desktop with Intel (R) Core (TM) CPU, i7-6700,
3.4GHz, 16GB RAM.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

FIGURE 8. Comparison results of different algorithms on the synthetic image. The number of clusters is 5. (a) Testing image. (b) PFCM. (c)
KWFLICM. (d) NDFCM. (e) Liu’s algorithm. (f) FRFCM. (g) DSFCM_N. (h) MSFCM. (i) AWSFCM. (j) RSSFCA.

TABLE 1. Performance comparison of different algorithms on the synthetic image. The best values are in bold.

Indices PFCM [17] KWFLICM [33] NDFCM [46] Liu’s algorithm [35] FRFCM [47] DSFCM_N [13] MSFCM [20] AWSFCM [34] RSSFCA

SA 0.9615 0.9521 0.9729 0.9857 0.9667 0.9588 0.9612 0.9735 0.9995
S 0.9258 0.5074 0.9472 0.9717 0.9356 0.5129 0.9252 0.9484 0.9991

B. SYNTHETIC IMAGE

To demonstrate the effect of the proposed RSSFCA on
image segmentation. We firstly apply testing algorithms on
a synthetic image corrupted by significant outliers. Fig. 8
shows comparative segmentation results. It can be seen that
the synthetic image includes four clear objects and a lot of
useless small objects as shown in Fig. 8(a). Our purpose
is to segment four clear objects while suppressing useless
small objects. Due to the fact that both PFCM and MSFCM
ignore spatial information of images, their segmentation
results contain more interference points as shown in Fig.
8(b) and (h). Focusing on Fig. 8(d), (f), and (i) generated
by the NDFCM, FRFCM and AWSFCM, respectively, we
find that these segmentation results still include many small
objects that influence the final segmentation accuracy. Both
KWFLICM and DSFCM_N provide misclassified results as
shown in Fig. 8(c) and (g). Compared to other algorithms,
Liu’s algorithm can achieve better noise suppression and the
removal of useless small region as shown in Fig. 8(e), since
it employs the mean-shift algorithm to obtain better adaptive
neighboring spatial information.

Although Fig. 8 shows that better spatial information
corresponds to better segmentation results, Liu’s algorithm
shows limited capability for the synthetic image with com-
plex background. The proposed RSSFCA shows the best
segmentation result since four objects are segmented accu-

rately as shown in Fig. 8(j). In general, the RSSFCA not only
suppresses noise effectively, but also merges useless small
regions to obtain excellent segmentation result.

To estimate the performance of all testing algorithms on
Fig. 8(a), we use two indices, i.e., the segmentation accuracy
(SA) and the quantitative index score (S). The SA and S are
computed as follows:

SA =

c∑
i=1

Ai ∩Gi
n

, (20)

S =

c∑
i=1

Ai ∩Gi
Ai ∪Gi

, (21)

where theAi represents a segmentation result, theGi denotes
the corresponding Ground Truth, the c is the number of
clusters and n is the total number of pixels of images. Ideal
segmentation results correspond to high values of SA (=1)
and S (=1). Table 1 shows values of SA and S for Fig. 8. In
Table 1, both PFCM and MSFCM provide lower values of
SA and S, which is consistent with the visual effect of Fig.
8(b) and (h). Both KWFLICM and DSFCM_N provide low
values of S, which shows that these two algorithms cannot
achieve accurate object segmentation for the synthetic image.
The NDFCM, FRFCM and AWSFCM provide similar values
of SA and S due to the employment of same neighboring
windows. Liu’s algorithm obtains higher values of SA and S
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KWFLICMImages PFCM NDFCM FRFCM DSFCM_N RSSFCALiu’s algorithm MSFCM AWSFCM

FIGURE 9. Segmentation results using different algorithms on the BSDS500 (the first group of images).

than previous algorithms but lower values than the RSSFCA.
Table 1 further demonstrates that the RSSFCA outperforms
comparative algorithms since it integrates a regularization
under Gaussian metric into its objective function and uses
the CCF-ADB to optimize the final segmentation result.

C. BENCHMARKS
In this section, we mainly validate the effectiveness of the
proposed RSSFCA on BSDS500 [50] and MSRC [52]. The
BSDS500 includes 500 natural images with size of 481×321
or 321 × 481, and each image corresponds to 4-9 manu-
ally generated ground truths with accurate pixel-wise labels.
These ground truths are delineated manually by different
human subjects. The MSRC collects 591 images with size
of 320 × 213 or 213 × 320 and covers 23 object classes. In
addition, all testing images have been transformed from color
space RGB to CIELAB.

Figs. 9-10 show the comparison of segmentation results
using different algorithms on BSDS500. According to Figs.
9-10, both PFCM and MSFCM generate poor segmentation
results including too many small regions since they can-

not overcome the sensitivity to intensity nonuniformity. Al-
though both KWFLICM and DSFCM_N reduce the number
of small regions by employing a neighboring window, they
easily cause mis-segmentation as shown in Figs. 9-10. The
AWSFCM shows low robustness since it is only valid for the
first test image as shown in Fig. 10. However, the utilization
of local spatial information may cause the loss of image
details, or even wrong clustering results for some images.
Although both NDFCM and FRFCM obtain better segmenta-
tion results than KWFLICM, DSFCM_N and AWSFCM by
using improved image filtering approaches, they still suffer
from over-segmentation. Liu’s algorithm further improves
segmentation results by incorporating large region-level in-
formation into its objective function, which avoids the limi-
tation of small and fixed neighboring windows. Compared to
previous algorithms, the proposed RSSFCA generates better
segmentation results due to its property of self-sparsity and
the utilization of CCF-ADB.

Fig. 11 shows comparison of segmentation results on
MSRC. It is clear that segmentation results in Fig. 11 show
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KWFLICM

Images

NDFCM

FRFCM

DSFCM_N

RSSFCA

Liu’s algorithm

MSFCM

AWSFCM

PFCM

FIGURE 10. Segmentation results using different algorithms on the
BSDS500 (the second group of images).

better visual effect than Figs. 9-10 due to simpler background
of MSRC than that of BSDS500. As the same as Figs. 9-
10, the proposed RSSFCA provides the best segmentation
result, which further demonstrates the proposed RSSFCA
outperforms comparative algorithms for image segmentation.

To evaluate segmentation performances of different algo-
rithms, four performance measures [47], namely, probabilis-
tic rand index (PRI), coving (CV), variation of information
(VI), and global consistency error (GCE), are used in our
experiments. If a segmentation result is close to its corre-
sponding Ground Truth, then the values of PRI and CV will
be large while the values of VI and GCE will be small.

In our experiments, the number of clusters c is set from
2 to 6 for each image in BSDS500, while it is set from
2 to 4 for each image in MSRC. We chose the group of
measures that corresponds to the largest value of PRI as the
final performance measures for each image. Tables 2-3 show
the average values of PRI, CV, VI and GCE on all images
in the BSDS500 or in MSRC, respectively. By comparing
the values in Tables 2-3, PFCM provides low performance
measures because it is sensitive to parameter tuning. Both
Liu’s algorithm and AWSFCM obtain better values of PRI,
CV, VI, and GCE than those of other comparative algorithms.

TABLE 2. Performance comparison of different algorithms on the
BSDS500. The best values are in bold.

Algorithms PRI↑ CV↑ VI↓ GCE↓
PFCM [17] 0.72 0.41 2.97 0.42
KWFLICM [33] 0.74 0.44 2.83 0.40
NDFCM [46] 0.75 0.44 2.78 0.39
Liu’s algorithm [35] 0.76 0.47 2.58 0.36
FRFCM [47] 0.76 0.45 2.67 0.37
DSFCM_N [13] 0.74 0.42 2.90 0.41
MSFCM [20] 0.74 0.43 2.85 0.40
AWSFCM [34] 0.75 0.45 2.74 0.38
RSFFCA 0.78 0.52 2.12 0.28

TABLE 3. Performance comparison of different algorithms on the
MSRC. The best values are in bold.

Algorithms PRI↑ CV↑ VI↓ GCE↓
PFCM [17] 0.67 0.55 1.84 0.31
KWFLICM [33] 0.69 0.55 1.93 0.32
NDFCM [46] 0.69 0.55 1.90 0.32
Liu’s algorithm [35] 0.71 0.54 1.77 0.34
FRFCM [47] 0.71 0.58 1.79 0.30
DSFCM_N [13] 0.69 0.54 1.91 0.32
MSFCM [20] 0.68 0.57 1.80 0.30
AWSFCM [34] 0.70 0.59 1.74 0.29
RSFFCA 0.75 0.64 1.51 0.24

The proposed RSSFCA provides the best values of PRI, CV,
VI, and GCE. By analyzing Figs. 9-11 together with Ta-
bles 2-3, the proposed RSSFCA achieves high-quality image
segmentation on different benchmark images, which further
demonstrates the effectiveness and robustness of RSSFCA.

D. COMPUTATIONAL COMPLEXITY
Computational complexity of algorithms plays an important
role in practical applications. Table 4 shows the comparison
of computational complexity of different algorithms, where
n is the number of pixels of an image, c is the number of
clusters, t is the number of iteration, w is the size of local
window, l is the number of gray levels of image, and the value
of l is close to the value of n for color images, O(M(c)) is
the computational complexity of Newton’s method for each
iteration [49].

Table 4 shows the comparison of computational com-
plexity of different algorithms. According to the Table 4,
PFCM requires higher computational burden than MSFCM
due to PFCM needing the parameter initialization by us-
ing FCM with t′ iterations. The KWFLICM, DSFCM_N,
and AWSFCM require high computational complexity since
these algorithms compute local spatial information of images
in each iteration. In addition, K ′ denotes the number of
α-planes for AWSFCM. Different from the previous five
algorithms, as both NDFCM and FRFCM only compute the
local spatial information of images once in the process of
image segmentation, they have low computational complex-
ity. Because the SSFCA involves two computational steps,
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Images KWFLICMPFCM NDFCM FRFCM DSFCM_N RSSFCALiu’s algorithm MSFCM AWSFCM

FIGURE 11. Segmentation results using different algorithms on the MSRC.

TABLE 4. Computational complexity of different methods.

Algorithms Computational complexity

PFCM [17] O(nct′ + nct)

KWFLICM [33] O(n(w + 1)2 + nw2ct)

NDFCM [46] O(nw2 + lct)

FRFCM [47] O(nw2 + lct)

DSFCM_N [13] O(nw2ct)

MSFCM [20] O(nct)

AWSFCM [34] O(K′(nw2 + 2nc)t)

RSSFCA O(nct′ + n(M(c) + c)t)

its computational complexity is composed of O(nct′) and
O(n(M(c) + c)t). The RSSFCA includes SSFCA and CCF-
ABD. As the time complexity of SSFCA is much larger than
CCF-ABD, the time complexity of RSSFCA is close to the
SSFCA. Therefore, RSSFCA avoids the heavily computa-
tional complexity because of linear iterative scheme.

E. DISCUSSION
In this section, we mainly discuss the influence of regular-
ization parameter γ for the sparsity of membership matrices.
Fig. 12 shows the comparison of membership matrices by

tuning the value of γ on the image “12003”, where the num-
ber of clusters is c = 2. We obtain the sparsest membership
matrix that is close to k-means when the value of γ is close
to zero. With the increase of the value of γ, more values of
membership are close to 0.5. All values of membership equal
to 0.5 when the value of γ equals to 1.

To discuss the effectiveness of the parameter γ, two va-
lidity functions [53], i.e., the partition coefficient denoted by
(Vpc) and the partition entropy denoted by (Vpe) are used for
performance evaluation. The Vpc and Vpe are defined as:

Vpc =

∑c
i=1

∑n
j=1 u

2
ij

n
, (22)

Vpe = −
∑c
i=1

∑n
j=1 uij ln(uij)

n
, (23)

where both Vpc and Vpe are intuitive indicators used to
measure the sparsity strength of membership matrices. If the
fuzziness of membership matrices is weaker, the value of the
Vpc will be larger while the value of the Vpe will be smaller,
and vice versa. Fig. 13 shows the change of validity functions
by varying the value of γ, which shows the performance
change of the SSFCA. In Fig. 13, it is observed that both
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γ=1γ=0.8γ=0.6γ=0.4γ=0.2
(a) (b) (c) (d) (e)

FIGURE 12. Comparison of membership matrices by tuning the value of γ on the image “12003”. Note that the membership matrix tends to
sparse by decreasing the value of γ. (a) γ = 0.2. (b) γ = 0.4. (c) γ = 0.6. (d) γ = 0.8. (e) γ = 1.0.

FIGURE 13. The change of validity functions by tuning the value
of γ.

Vpe and Vpc are constant when γ > 0.5 because all values
of membership are non-sparse and they are equivalent. The
parameter γ can control the degree of sparsity only when
γ ≤ 0.5. Therefore, we experientially set the value of γ to
0.2.

V. CONCLUSION
In this work, we have proposed a novel self-sparse fuzzy c-
means clustering algorithm (RSSFCA) for image segmen-
tation. The proposed RSSFCA has been used to address
two drawbacks in current image segmentation algorithms
based on fuzzy clustering. On the one hand, the RSSFCA
incorporates a regularization term to its objective function to
balance the sparsity of membership and fuzziness, and it thus
achieves self-sparse fuzzy clustering. On the other hand, the
RSSFCA employs the CCF-ADB to achieve effectively small
region merging, which leads to excellent image segmentation
results. Experiments on synthetic images and benchmark im-
ages demonstrate the proposed RSSFCA outperforms state-
of-the-art algorithms in terms of better segmentation results

and higher values of performance indices. Furthermore, we
analyzed the influence of regularization parameter values on
clustering results, which shows that the proposed RSSFCA
can provide good clustering results when the value of γ is
less than 0.5.
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